

It pays to be obvious, especially if you have a reputation for subtlety.

 Isaac Asimov

We would like to clarify from the start that this is first
and foremost a contest focused on programming
prowess and not on unrelenting adherence to some
particular definition of “beautiful” code. However, we
do value the time of the referees and their general
happiness and wellbeing, which makes it necessary to
lay out some coding style rules. Whilst completely
refusing to adhere to them cannot make you lose the
contest if you have a much better solution than all

others, some points
will be lost if the
submitted code
makes no effort to
at least abide by the
following general
pointers. Most of
what we suggest is
in line (up to being
identical where
adequate) with
Bjarne Stroustrup’s

recommendations
presented in [1],
which are partially
reproduced in [2].
Alternatively, the
rules presented in

[3] are equally palatable, as are minor variations of
these two (not hugely dichotomous) approaches.

General aspects

1) Avoid functions or classes that contain more than
200 logical source lines of code;

2) Try, to the best of your ability, to ensure that any
single function or class fits on a screen and serves a
single logical purpose.

Preprocessor related aspects

1) Avoid, to the best of your ability, macros; use them
solely for source control;

2) #include directives should precede all non-
preprocessor declarations;

3) Place only const variable definitions and inline
template function definitions in header files.

Naming and layout related aspects

1) Use indentation and maintain its consistency within
the same source file / project;

2) Place one statement per line:
float pi=3.14f; c=2*pi*r; a(pi,r);//not OK
float pi = 3.14f; //OK
c = 2 * pi * r; //OK
area(pi, r);//OK

3) Use descriptive names for identifiers, which may
contain common abbreviations and acronyms;

P a g e | 1

C++ AMP CONTEST

Coding Style Guidelines

May 8, 2012

4) Prefer the number_of_elements style of notation
when using multiple words;

5) Hungarian notation shall not be used (please!);

6) Only type, template and namespace names start
with a capital letter; be parsimonious in your naming
(no excessively long names);

7) Underscores shall not be used as the opening
character of an identifier;

8) Differentiate identifiers by more than:

 a mixture of case;

 presence/absence of the underscore character;

 interchanging the letter O with the number 0 or
the letter D;

 interchanging the letter I with the number 1 or
the letter l;

 interchanging the letter S with the number 5;

 interchanging the letter Z with the number 2;

 interchanging the letter n with the letter h (or
any other similar exchange.

9) Avoid using all capital letters and underscores for an
identifier.

Function and expression related aspects

1) Identifiers in an inner-scope should not be
identical to identifiers in an outer scope;

2) Try to include declarations in the smallest
possible scope;

3) Magical constants shall not be used (please!).

Following the simple guidelines enumerated above will
make your code easier to parse, thus ensuring you will
achieve the highest score possible in the subjective
evaluation of code quality, and ensuring that once its
published other interested people will be able to learn
from it, as opposed to being completely discouraged by
the difficulty of figuring out even the simplest aspects.

We thank you in advance for making everybody’s life
easier by making your code reader-friendly.

References

[1] B. Stroustrup, Programming: Principles and Practice
Using C++, 1st ed. Addison-Wesley Professional,
2008.

[2] “Stroustrup: C++ Style and Technique FAQ.”
[Online]. Available:

 http://www2.research.att.com/~bs/bs_faq2.html#w
hitespace.

[3] “Qt_Coding_Style | Qt Wiki | Qt Developer
Network.” [Online]. Available:

 http://qt-project.org/wiki/Qt_Coding_Style.

WWW.BEYOND3D.COM

DEVELOPER.AMD.COM

BLOGS.MSDN.COM/B/
NATIVECONCURRENCY

P a g e | 2

http://www2.research.att.com/~bs/bs_faq2.html%23whitespace
http://www2.research.att.com/~bs/bs_faq2.html%23whitespace
http://qt-project.org/wiki/Qt_Coding_Style
http://www.beyond3d.com/cppampcontest
http://developer.amd.com/
http://blogs.msdn.com/b/nativeconcurrency/
http://blogs.msdn.com/b/nativeconcurrency/

