The SMARTSHADER Effects Programmer’s Guide

Maurice Ribble and Roger Descheneaux

SMARTSHADER Effects is a simple framework for adding post-processing shader effects to 3D games and applications using ATI graphics cards. In the case of OpenGL applications, this feature supports user-defined shader programs for custom effects. The purpose of this guide is to briefly describe what SMARTSHADER Effects lets you do, and help programmers get started creating their own effects using some simple examples.

The first iteration of SMARTSHADER Effects came into being when a few of the OpenGL driver engineers at ATI were discussing various driver “enhancements” that other vendors have implemented, like allowing the player to see through walls. This evolved into a discussion about the cool effects that are possible with the power of the RADEON 9500 and higher graphics cards. Eventually we figured out an easy-to-implement system that would not allow cheating, but would still allow for some pretty interesting effects.

It is useful to understand some of the basics of how most video games are rendered today to help understand how SMARTSHADER Effects work. Most games use a technique called double buffering, meaning that there is a buffer that is always visible on your monitor called the front buffer, as well as a back buffer where the game renders frames. After rendering to the back buffer is finished for the current frame, it is copied to the front buffer and becomes visible. This makes sense because a user just wants to see the finished picture and not watch each object get drawn separately. SMARTSHADER Effects does all of its work during this copy (often called a swap) from the back buffer to the front buffer.

This is important for a few reasons. First, it means that SMARTSHADER Effects won't work with the few applications that are single buffered, or if the application does some of its rendering directly to the front buffer (and a few other rare cases). It also means that we can make it programmable without fear of people using this feature to cheat in games. Since it happens during the swap from the back buffer to the front buffer the user can only perform operations on the finished frame and we don't have to worry about people doing things like transparent walls or invisible fog. About the only questionable thing someone can do is try to increase contrast, which can already be done by adjusting gamma, so SMARTSHADER Effects does not introduce any new methods for cheating in games.

What Can I Do With SMARTSHADER Effects?

The basic idea behind SMARTSHADER Effects is to allow the user to apply an ARB_fragment_program to a buffer during the swap from the back buffer to the front buffer. The most complicated part about writing new shader scripts will be writing the ARB_fragment_program portion. For more information on the ARB_fragment_program extension see:

http://www.ati.com/developer/sdk/RADEONSDK/Html/Info/Extensions/GL_ARB_fragment_program.html
Another easier, though less thorough way to learn about this extension is to look through the example SMARTSHADER Effects programs provided by ATI.

The simplest SMARTSHADER Effects example is something that just executes a single-instruction fragment program as you perform the swap from the back buffer to the front buffer. Black and White.pss does just that, and converts color images into monochrome black & white.

shader grayscalePixelShader =

"!!ARBfp1.0

PARAM scale = {0.30, 0.59, 0.11, 1.0};

TEMP pixel;

OUTPUT oColor = result.color;

TEX pixel, fragment.texcoord[0], texture[0], 2D;

This is a standard color to black-and-white conversion.

You multiply each color by a factor and add them up, getting

a result in the range 0.0 to 1.0, which represents the intensity

of the original image, and the same intensity is copied to all

fields of the output, resulting in a grayscale image for the

result.

DP3 oColor, pixel, scale;

END";

texture[0].source = back buffer;

apply grayscalePixelShader;

Let’s look at this SMARTSHADER Effects script. The first thing it does is create an ARB_fragment_program which is called grayscalePixelShader. This program does a dot product on the pixel in texture unit 0 and the constant parameter named scale. To describe this in more basic terms, we take the red portion of the current pixel in texture unit 0 and multiply it by 0.30, multiply the green portion by 0.59, and multiply the blue part by 0.11, and then add those three parts together. This is the definition of a dot product and those constants are commonly used constants to create a smooth grayscale.

After that program is defined we say the source of texture unit 0 is the back buffer. We need to do this because we are using texture unit 0 in grayscalePixelShader. Then, after we have everything set up, we apply the grayscalePixelShader which will be executed every time a swap happens. This is the basis of how SMARTSHADER Effects works. Other programs build on this so it's important to understand this example before going on. You might want to experiment with changing the constant parameter scale to see what new effects you can make. Can you make your favorite OpenGL game look green and black rather than white and black? Maybe you want add to the fragment program a MUL instruction to multiply by a new constant and create a ramping effect that makes bright colors brighter and dim colors dimmer. Have fun and do some experimenting.

Create a Temporary Surface

This technique is used in most of the SMARTSHADER Effects examples provided by ATI. A simple example would be Emboss (Black and White).pss. The idea behind this is to use a 3x3 convolution post-processing filter to apply an emboss effect. Embossing using kernel filters has been done for many years by photo and image editing software, now you can do it in real time on your games! The reason the temporary surface is needed for embossing is because you are reading in a central pixel as well as the 8 surrounding it. Reading in those neighboring pixels is the reason for calculating all of the other texture coordinates in the pixel shader. Since you are looking at nine pixels you don't want to modify the current buffer, because changing it would change the results of the neighboring pixel values you calculate after this one. If you want, you can try removing the temporary surface from the emboss example and see what happens.

Constants You Can Request

There are certain values that we knew would be useful in this language that can be passed in to the programs as variables. An example of most of these language-defined variables can be found in Green ASCII.pss and RGB Cycle.pss. The defined variables are:

· width – The width of the window.

· height – The height of the window.

· ds_dx – 1.0 divided by the width of the window.

· dt_dy – 1.0 divided by the height of the window.

· swapNumber – The number of swaps that have occurred since the application started (could also be called current frame number).

· time – Uses the Windows QueryPerformanceCounter() function and returns the number of ticks since the first swap.

Supported Math and Logic Operations

Look at RGB Cycle.pss to see an example of supported math and logic operations. We support +, -, *, /, and %. Also, you will see that if(), else if(), else() predicate logic statements are supported. If you look at Green ASCII.pss you will see a trunc() function, which truncates the floating point value. All math operations in Programmable SMARTSHADER are treated as floating point.

Relying on Previous Frames

Under most conditions you can expect whatever you put in a surface in one frame to still be there in the next frame. This is useful for ghosting (i.e. poor man’s motion blur). There is an example of this in Ghost.pss. Better algorithms are certainly possible, along with other uses we haven’t thought of yet.

Passing in a User Defined Texture

This allows people to pass in a texture they created and use it. My personal favorite SMARTSHADER effect, Green ASCII.pss, uses this feature. It reads in ascii8x10.raw which is a 512x10 RGBA texture. The .raw texture format is the only supported file format, and this is raw, uncompressed texture data with no header information. The function that loads a texture is load_texture(TexUnit, TexWidth, TexHeight, TexDepth, TexDataType, TexName).

· TexUnit is the number of the texture unit your ARB_fragment_program assumes this texture is loaded to.

· TexWidth is the width of your texture in pixels.

· TexHeight is the height of your texture in pixels.

· TexDepth is the depth of your texture (3D textures are not currently supported so this must be equal to 1).

· TexDataType is the format of the texture data in the .raw file, and the format you want to use on the hardware (only unsigned byte is currently supported).

· TexName is the file name you want your texture to use (this file must be in the same directory as your SMARTSHADER Effects script).

It is possible to imagine an interesting “old movie” effect, with the grainy video, hairs, and dust specks, being done with user-defined textures.

Odds and Ends

Specifying an Input Program

To use your SMARTSHADER Effects program, use the pssControl.exe applet available from the ATI developer web site to point to your new source file.

Error Log

Since the SMARTSHADER Effects script is a compiled program, it is possible that the program input will have errors in it. During compilation of the program, errors are logged to a file called “SmartShaderErrorLog.txt” in the same directory as the source program file. There implementation of error messages in SMARTSHADER Effects is currently quite limited, but the log file should be at least somewhat helpful when debugging new programs.

Valid Applications

Programmable SMARTSHADER Effects currently work only with OpenGL programs. When enabled, it replaces the old, static SMARTSHADER Effects programs. It does not work with Direct3D applications.

