Photo-realistic Deferred Lighting
By Dean Calver
Introduction
Deferred Rendering attempts to combine conventional rendering techniques with the advantages of image space techniques. In this article we separate lighting from rendering and doing so make lighting a completely image-space technique, this has some disadvantages but also some key advantages.

These advantages include
· Lights major cost is based on the screen area covered.
· All lighting is per-pixel and all surfaces are lit equally.
· Lights can be occluded like other objects, this allows fast hardware Z-Reject.
· Shadows mapping is fairly cheap
The main disadvantages are

· Large frame-buffer size

· Potentially high fill-rate

· Multiple light equations difficult

· High hardware specifications
· Transparency is very hard
History

The concept of deferred lighting seems to appears in Takahashi and Saito’s “Comprehensible rendering of 3-D shapes”[1] with the earlier work in Perlin’s “The Image Synthesizer”[2] providing important contributions to the idea of image space post-processing for shading evaluation. Takahashi and Saito paper is actually on NPR techniques (which Mitchell has adapted for real-time [3]) but they mention that it could be adapted to photo-realistic rendering (which is what this article presents). The major contribution Takahashi and Saito introduced were Geometry Buffers (G-Buffers), these are the fundamental primitive that allows deferred lighting to work.

Deferred Rendering or Deferred Shading or Deferred Lighting?

The term deferred rendering is used to describe a number of related techniques; they all share a deferment stage but differ in what portion of the pipeline is deferred. This article only defers the lighting portion of the pipeline, all other parts can be done in what ever way you like, and the only requirement is that the G-Buffers are filled prior to the lighting stage. Deferred Shading is typically where the actual surface shader execution is deferred, this is the model presented by UNC Pixel Plane project [4].
Important Concepts

Textures as arrays

Textures can be as used as 1-3D arrays; we use this feature a lot, so its worth examining the major differences between textures and arrays first. Textures are not conventional arrays and we can use these extra properties to our advantage, but there are also consequences that we most work around.

Out of bounds

Textures are very good at handling out of bounds array access, the wrap mode texture states allow us to control how out of bounds is handled on each axis separately. The usual mode is to use clamp to repeat the last texel ad infinitum, alternatively we can use a wrap setting to do a modulus operation on the indices for free.

Linear Interpolation

Bilinear filtering gives us free linear interpolation between samples which is very nice when we are storing a discrete approximation to a function. The main problem is that we cannot control this on a per-axis basis. A common pattern is to store the discrete approximation to a 1D function along one axis of the texture, and store different functions along the other axis. In this case we want only linear not bilinear interpolation; there are 2 approaches to achieving linear interpolation from a texture.

1) The manual method, using point sampling samples the texture twice and does the lerp in the Shader.
2) Pad the texture, here we repeat each sample so that the 'free' linear interpolation on the axis we don't want comes out with the same value as if we were only point sampling on that axis.

The 2nd approach costs texture space due to the extra copy of each sample but the pixel shader only samples the texture once to retrieve the linearly interpolated result, this saves both texture lookups and arithmetic instructions, I usually use this approach.

Projection

When sampling a texture, we can optionally specify to divide each coordinate by the W coordinate. We can use this to get a free divide whenever we want to look something up. This saves pixel shader instructions especially when converting a perspective position into a texture lookup.

Geometry Buffers (G-Buffers)
G-Buffers are 2D images that store geometric details in a texture, storing positions, normals and other details at every pixel. These details are stored so that image space operations can use them as a post-process, originally Takahashi and Saito used these for NPR outlining, hatching etc. But instead we use them as parameters into lighting equations so that we can evaluate a photo-realistic light model after rendering all geometry. To do this we must also store surface material information, this makes our buffers not strictly G-Buffers but I still refer to them as such.

The key ingredient to hardware acceleration of G-Buffers is having the precision to store and process data such as position on a per-pixel basis. This really requires floating point pixel processing (it is possible to do without but this is usually extremely limited), but the higher precision we have to store the G-Buffer at, the slower the hardware renders. Using floats seems tempting from a ease of use point of view but suffers from serious performance problems, the large size (128 bits per 4 channels), slow rendering (up to 4 times slower then 8 bit integers) and other issues (no post-blending operations and limited hardware support under Direct3D) suggests we should attempt to implement G-Buffers without float render-target support.
The element usually requiring the highest precision is the position data, the actual precision required is dependent on which space we store position in. Ideally we want to store our position where quantization errors will minimally affect the lighting.
Storing Position

As we are only storing positions that physically appear on screen we have a finite range that we most cover adequately, this finite range points to a view space or later transform. We want to enclose the view frustum with the minimum bounding box (as this will reduce wastage) but the minimal bounding box to a perspective view frustum is not a good fit, in particular there is a lot of wastage at the near plane. If on the other hand we use the minimal bounding box post-perspective, there is no extra wastage at the near plane. Post-perspective gives us equal number of units across the near and far plane with each unit covering more world space at the far plane [5].

[image: image1]
By storing position in screen space (post-perspective, post homogeneous division) we can store our position as a 3D vector that is both compact and high precision over the entire view. This costs a few extra instructions to undo but the advantages in bandwidth and visual fidelity make it worthwhile in my opinion.

Using 16 bit float’s to store view space is another option, the floating point encoding will preserve the precision at both the far and near plane but it still not as accurate as an 16 bit integer screen space position. Using 16 bit float view space will save instructions though, so if the quality is good enough it’s probably worth using it [6]. The biggest problem is that rendering to 4 channel float16 formats is not currently widely supported, to support the full range of DirectX 9 hardware I use 16 bit integers as they can be easily stored as 2 sets of 8 bit integers for cards which only have 4 channel 8 bit integer render-targets (currently this affects the NVIDIA GeforceFX).
This leads to a pair of HLSL functions that take HCLIP position and store it in the G-Buffer and the reverse function which produces the position in the space the shader requires (usually for lighting I use view space). The matrix that takes us from screen G-Buffer position into shader space, automatically accounts for the un-bias operation. It also leaves screen space w in place for post-processing effects like fog and depth of field. Other data stored in the G-Buffer may need its own set of pack/unpack functions but most will be a lot less complex than for position data.
float3 PackPositionForGBuffer(float4 inp)

{

float3 o;

o.xyz = inp.xyz / inp.w;

o.xy = (o.xy * 0.5) + 0.5;

return o;

}
float4 UnPackPositionFromGBuffer(float3 inp)

{

float4 o;

o.xyzw = mul(float4(inp,1), matGBufferWarp);

o.xyz = o.xyz / o.w;

return o;
}
We need enough channels to store all the parameters in our lighting equation, and while every implementation will have different requirements, there are likely to be some parameters required by all.

1. Surface Position

2. Surface Normal

3. Surface Colour

4. Surface Material

At a minimum this requires 10 channels and in practise we will use several more. Currently there are no texture formats with that many channels, which implies multiple textures to store all the data. I tend to use 16 channels as this allows enough spare channels to customise the light equation but 12 may be enough in many cases.

The minimum hardware support for G-Buffers is therefore Pixel Shader 2 and render-to-texture. If the hardware only supports 8 bit per channel, any channels that need higher precision will need extra passes and be recombined when used (currently the NVIDIA GeForce FX needs these technique, this may be driver fixable in future).
If the card supports Multiple Render Targets (MRT) (like ATI 9500 and higher), we can use this to reduce the number of passes used to create the G-Buffer.. The ATI 9500 and higher cards support up to 4 render-targets simultaneously and each render-target can be an A16B16G16R16 surface so we can generate the G-Buffer used here in 1 pass. Multiple Element Textures may also allow a similar reduction in passes but isn't well supported in hardware yet.

MRT and 16 bit integer render-targets enable single pass G-Buffers to be used as simply as standard rendering, for cards without MRT or higher precision surfaces we have to fall-back to multi-pass techniques to generate the G-Buffer.

Overview of deferred lighting

There are 3 distinct phases in deferred lighting.

1. Geometry phase

2. Lighting phase

3. Post-processing phase

Each phase uses DirectX shaders (both vertex and pixel shaders) but the purpose and input is distinctly different, the output of each phase becomes the input of the next with the last phase (Post-processing) having access to the output of both geometry and lighting phase. The majority of the rest of this article will concentrate on the 2nd and 3rd phases, when the G-Buffers are filled ready for use and the image-space techniques that use these buffers to produce a photo-realistic image.

Geometry phase
The Geometry phase is the only phase that actually uses an objects mesh data, the output is the G-Buffer and the inputs are whatever each object requires. At its simplest, this could just be 2D operations (copying G-Buffer data) this would allow relighting to occur without mesh rendering.
Each geometry shader is responsible for filling the G-Buffers with correct parameters. This is roughly equivalent to a Renderman surface shader, the main difference being that whereas Renderman surface Shaders compute the lighting values our system just outputs parameters to the lighting phase..
Usually the depth buffer is used to determine the closest surface at each pixel. If the geometry shaders are quite expensive it may be worth doing a depth set-up phase [8] (here all geometry is rendered to set-up the depth buffer, then the geometry is re-rendered with the actual shaders).
The major advantage over the conventional real-time approach to Renderman style procedural textures is that the entire shader is devoted to generating output parameters and that it is run only once regardless of the number or types of lights affecting this surface (generating depth maps also requires the geometry shaders to be run but usually with much simpler functions).
Another advantage is that after this phase how the G-Buffer was filled is irrelevant, this allows for imposters and particles to be mixed in with normal surfaces and be treated in the same manner (lighting, fog, etc.).

Some portions of the light equation that stay constant can be computed here and stored in the G-Buffer if necessary, this can be used if you light model uses Fresnel (which are usually only based on surface normal and view directional).

Lighting phase
The real power of deferred lighting is that lights are first class citizens, this complete separation of lighting and geometry allows lights to be treated in a totally different way from standard rendering. This makes the artist’s job easier as there is less restrictions on how lights affect surfaces, this allows for easy customizable lighting rigs.
Light shaders have access to the parameters stored in the G-Buffer at each pixel they light. These parameters will be customized to each renderer but to be really useful they most include some standard parameters vital to photo-realistic lighting. These include position, normal, light model parameters and surface colours. In many cases these parameters will be packed but we ignore that for the discussion of light shaders and just assume the parameters are already in a form ready for use.

I’ll try and borrow standard variable names from Renderman and the Phong / Blinn [9][10] lighting equations. Some of these are stored in the G-Buffer, some are properties of the light, and some are calculated in the shader, also not all variables will be used for every shader.

Lighting Variables

P = Surface Position in view space

N = Shading Normal in view space

E = Eye point in view space (usually <0,0,0>)

I = Incident vector (from the eye to the surface position)

L = Light Vector

H = Half vector (normalize(N + L))

Cs0 = Surface Colour 0

Cs1 = Surface Colour 1

Cs = Surface Colour (used whenever which surface colours is not specified)

Cl = Light Colour

LB = Light buffer (the output of light shaders)

Kd = Diffuse Coefficient

Ks = Specular Coefficient

Kamb = Ambient coefficient

Kemm = Emissive coefficient

Light Model

One disadvantage of deferred lighting is that it’s comparatively expensive to have multiple light models, while programmable light models are considered one of the main advantages of the programmable pipeline the increase in quality and number of lights may compensate. The usual method for deferred lighting is to pick one model that can manage most of the surface types your scene will have. Here you have to make trade off between number of parameters to store and the cost of evaluating the entire light model per pixel against the uber light model you would like.
The choice of light model will affect the renderer more than any other, so it’s worth customizing the existing models rather than a simple implementation straight out of a research paper. I choose to use a superset of the classic Phong / Blinn model for this article, the reason being it makes it easy to understand what’s going without having to get into BDRF theory and it’s quick to both implement and execute.

The Phong / Blinn model splits lighting into 4 major components, Ambient, Emissive, Diffuse and Specular. The ambient and emissive portions are only calculated once but the diffuse and specular are calculated per light.
Psuedo Code:

Once Per Scene
LB = Kamb * AmbientColour + Kemm * Cs

For Every Light:
Diffuse = N dot L

Specular = (N dot H) ^ shininess
if(Diffuse > 0)

LB += Cs * Diffuse * Cl * Kd;

if(Specular > 0)

LB += Specular * Cl * Ks;
This basic model has a number of problems; the first (and most famous) is that it has a tendency to make everything look like plastic. Other better light models (like Blinn / Cook / Torrance) can be evaluated directly but we can often produce close approximations via modifying the traditional light model to use the capabilities of modern graphics cards.
One thing video cards do very well is read textures quickly; we can use this capability to replace a lot of the fixed portions with a table lookup. More advanced light models often have different shapes produced via the N dot L and the N dot H term, models like Oren / Nayer produce a flatter diffuse based on a roughness term. One quick improvement is to replace the fixed diffuse and specular dot product shape function (the diffuse has one that is identity under Phong / Blinn) with a table lookup based on the material parameters.
The result of a dot product can range -1 to 1, but the conventional model only uses the positive half. While you can use this property to save texture space I prefer to let the dot product shape function decide what happens when the surface normal is back faced to the light. This allows us to simulate ‘wrap’ surfaces which are good approximations to a small amount of subsurface transparency and subsurface scattering (the material is assumed to transmit some of the light from the front of the surface to the back). In a second channel of the dot product shaping texture we store a cascading multiplier that controls the next element in the standard light equation, this is used to eliminate the specular highlight when the diffuse component is back faced even though the N dot H is front faced. It can also be used for custom lighting where the specular highlights are also affected by the N dot L term.
We now demonstrate the standard Blinn / Phong model using this new and improved model.

// diffuse dot product shaping function

float2 Fa(float dotp)

{

// if light is front facing

if(dotp > 0)

return float2(dotp,1); // identity shape and cascade multiplier = 1

else

return float2(0,0); // kill the lighting and cascade multiplier = 0
}

// specular dot product shaping function

float Fb(float dotp, float shininess)

{
// if light is front facing

if(dotp > 0)
return pow(dotp, shininess); // shape = power function(^shininess)
else

return 0; // kill the lighting
}
For Every Light

Diffuse = Fa(N dot L)

Specular = Fb(N dot H, shininess)

LB += Cs * Diffuse.x * Cl * Kd

LB += Specular * Cl * Diffuse.y * Ks

We can replace the functions Fa and Fb with textures if we bias the dot products into the range 0-1. To enable flexibility we make them 2D textures and the second parameter is used to access which particular dot product shaping function this surface point uses. Another property we would like is the ability for the specular highlight to take on the colour of the light combined with the surface (plastic) or just the surface only (metallic). We achieve this by adding another parameter that controls a lerp between the 2 options.
The ambient and emissive is executed as the set-up phase, and the main portion of the light model is contained in a function that most lights call. Some lights implement there own main portion which allows for special lighting conditions such as diffuse only lights or specular only lights. The function that implements the main portion of the lighting model uses Cs0 as the surface colour for the diffuse and Cs1 as the specular and emissive surface colour.

float3 Illuminate()
{

float2 Diffuse = tex2D(DotProductFuncs, float2(bias(N dot L), Fa));

float2 Specular = tex2D(DotProductFuncs, float2(bias(N dot H), Fb));

float3 output = Cs0 * Cl * Diffuse.x * Kd;
output += Specular.x * Lerp(Cs1*Cl, Cs1, Kspecblend) * Diffuse.y * Ks;

return output;

}
This gives the a light model that is capable of emulating (to a high degree) Blinn / Phong, Oren / Nayer, wraps and can have a plastic or metal highlight. It also allows other non-standard surface materials, e.g. by modulating Cs1 by a Fresnel function in the geometry phase you can achieve view dependent specular, and Cs1 can also be determined via a local environment map in the geometry phase. You can make Fb into the diffuse portion by using a constant Fb function and passes N dot L in via the cascade multiplier, or by using a non constant Fb function you have access to a (N dot L)*Fb(N dot H) term. Even though the light model is fixed the use of replaceable dot product functions, gives us a lot of freedom for custom materials.

The Illuminate function is the major definer of the type of G-Buffer used, we need to store all the parameters needed to execute this function. This is a total of 19 parameters (Position, Normal, DiffuseFunc, SpecularFunc, Cs0, Cs1, Kd, Ks, Kspecblend, KAmb and KEmm) which is more than the 16 channels we have available (you could add more channels to the G-Buffer but you would no longer be able to render in a single pass on MRT cards). The reduction to fit the G-Buffer uses the fact the some parameters change less frequently and removes some redundancy. Some parameters usually don’t change within a material, so by storing a material index in the G-Buffer when can lookup the actual parameters in the light shader. Also Kd and Ks can be pre-multiplied into Cs0 and Cs1 and don’t have to stored explicitly (Pre-multiplying Ks does effect the emissive colour in my light model but I can live with this error). Also I’ve added an ID field that is explained later.

[image: image2]
Full screen lights

For lights that are truly global and have no position and size (ambient and directional are the traditional types), we create a full screen quad that executes the pixel shader at every pixel. The light shader reads the parameters from the G-Buffer, computes the light value at this pixel and then accumulates into a destination light buffer.

We need to initialise the destination light buffer, so we run a full screen light shader that does this. I have 2 standard variants, one sets the destination light buffer to the global ambient and the surfaces emissive colour, the other replaces the ambient term with a simple hemispherical light source.

AmbientEmissiveLightShader(float3 AmbientColour)

{

LB = Kamb * AmbientColour + Kemm * Cs1;

}

A hemispherical light model uses the surface normal and the world up vector to blend between 2 colours (so called sky and ground colours)

HemisphereEmmisiveLightShader(float3 GroundColour, float3 SkyColour, float3 WorldUp)

{

float dp = N dot WorldUp;

float blend = 0.5 + dp * 0.5;

float3 hemicol = Lerp(GroundColour, SkyColour, blend);

LB = Kamb * hemicol + Kemm * Cs1;

}

Another full screen light that we are used to is the classic directional light. This light type (known as Solar under Renderman) assumes the light is infinitely far away, and the light vector is parallel for the entire scene. The means the vector L is a constant for the entire light shader. For local viewer, the incident vector I is different at every pixel, with a infinite viewer this is also constant but produces inferior specular highlights. I assume a local viewer throughout my examples but it is trivial to change to a infinite viewer (I = <0,0,1> for infinite viewer as we light in view space).

DirectionalLight(float3 LightDirection)
{
// for local viewer I = - the normalized surface point in view space
// for infinite viewer I = <0,0,1> in view space

I = normalize(-P);

L = LightDirection;

LB += Illuminate();
}

Shaped Lights

The second category of lights, are the lights that have position and shape (like point lights, spotlights etc). These are the most interesting category and usually end up faster than full screen lights, the reason is that for deferred lighting the cost of a light is proportional to the number of pixels covered with shaped lights there is the potential for that to be less than every pixel on the screen. This leads to the unusual situation that several medium sized point lights may be faster than 1 directional light.
Shaped lights can be implemented via a full screen quad in exactly the same way of directional lights just with a different algorithm computing the lights direction and attenuation, but the attenuation allows us to pre-calculate where the light no longer makes any contribution.

Standard DirectX/OpenGL attenuation [11][12] uses a quadratic equation that I’ve always found hard to tweak and the constant term means that the light can affect all surfaces regardless of how far away they are, this would require the use of a full screen light. The attenuation model I use is a simple texture lookup based on distance. The distance is divided by the maximum distance that the light can possible effect and then this is used to lookup a 1D texture. The last texel should be 0, (no constant term) if the following optimisations are to be used.

float Attenuate(float3 LightPosition, float MaximumLightRange)

{

float distance = | LightPosition – P |;

distance /= MaximumLightRange;
return tex1D(AttenuationTexture, distance);

}

PointLight(float3 LightPosition, float MaximumLightRange)
{

I = normalize(-P);

L = normalize(LightPosition – P);

float atten = Attenuate(LightPosition, MaximumLightRange);

LB += Illuminate() * atten;
}

We can also do spotlights easily by adding an angular attenuation term and using the dot product to index into a texture. The AngularFalloffCoord is used as the second coordinate which is used to select the angular falloff (each combination in inner and outer angle will have a different 1D function in the 2D texture).

float AngularAttenuate(float3 LightDirection, float AngularFalloffCoord)

{

float dotp = -P dot LightDirection;

 return tex2D(AngularAttenTexture. float2(bias(dotp), AngularFalloffCoord));
}

SpotLight(
float3 LightPosition, float MaximumLightRange,

float3 LightDirection, float AngularFalloffCoord)

{

I = normalize(-P);

L = normalize(LightPosition – P);

float atten = Attenuate(LightPosition, MaximumLightRange);

float anglularatten = AngularAttenuate(LightDirection, AngularFalloffCoord);

LB += Illuminate() * atten * angularatten;
}

 With the attenuation models we now have the maximum distance the light can possible effect and the maximum angle. We can now calculate which pixels are beyond these ranges and try not to run the pixel shaders. Regardless of any optimisation we make regarding actual pixels we need to run the lights shader at, the per-pixel Shader stays roughly the same.

The first approach used is a screen aligned quad just big enough to cover the light which we calculate by projecting the sphere formed by the light position and the maximum distance, to the screen. This requires no changes at all from using a full screen quad, as all we are doing is roughly removing the pixels where the attenuation has reduced the lighting contribution to zero..

Improving Efficiency

But we can do much better then light sized quads, it still covers a lot of pixels where the lighting contribution is zero, even for a simple point light with a spherical shape, the corners of the quad are wasted. For spotlights it’s even worse. We could try a oriented bounding box which would help (but not much) the spotlight case but wouldn’t help point lights. What we really want is the 2D projection of the volume where the lighting contribution isn’t zero.

We create a mesh that encloses the light affecting volume with any pixels found to be in the interior of the volume executing the light shader. The hardware is very good at projecting geometry, but our requirements for light volumes are different from the standard mesh projection. There are 2 major unusual requirements that light shaders have,

1) Each pixel most be hit once and once only. If the light volume causes the light shader to be executed more than once it will be equivalent to having n lights affecting this pixel.

2) The near and far clip planes must not effect the projected shape. We need the projected geometry not to be clipped at the near and far plane as this will cause holes in our lights.
The only change to the light shader due to using 3D geometries rather than quads is that the we must use projective texture lookups to access the G-Buffer as the uv coordinates are now being interpolated in 3D space.

These requirements are similar to shadow volumes techniques, which have become robust recently and are quite complicated. We are able in many cases to use much simpler (almost trivial) solutions but in the most extreme cases we will need to use similar techniques to shadow volumes.

Convex Light Volumes
The first and most important thing to note is that if the light shader geometry is closed and convex the solutions to the problems are much simpler. The first problem is solved due to an often forgotten (in these days of fast depth buffers) fact about convex objects, the only hidden surface removal needed for a closed convex object is back face culling [13]. In other words, for convex volumes the first problem is completely removed by just using back or front face culling.

The second problem is also greatly simplified, I was very careful to say back or front face culling, as when depth buffering is off and no clipping occurs the same pixels will be covered whether you cull front or back faces. The correct pixels will also be covered if you are rendering back faces and clipping the near plane but not the far plane and if you are rendering front faces and clipping the far plane but not the near plane. Unfortunately there is no easy solution if the geometry is clipped by both the far and near plane, so ideally we would like to guarantee that will never happen. We can’t remove the near plane, but we can effectively remove the far plane by placing it at infinity.

Placing the far plane at infinity has very little side effects (I’ll leave the mathematical treatment to better people than I [14][15]), but means we can now render our convex geometries with an infinite far plane and front face culling and have the correct pixels hit once and once only, regardless of clipping.

Convex volumes cover the vast majority of lights shaders (e.g. spheres for point lights, cones for spotlights, etc.) and we can adapt them to use the fast z-reject hardware that is usually available.
Light Shader Occlusion Optimisations

Modern hardware usually has some kind of hierarchical depth buffer, which is able to reject pixels very quickly if the pixel shader result isn’t visible. By enabling this capability for our light shaders, we will only pay for lighting that can actually be seen on a per-pixel basis. I.e. if a light is largely occluded by a wall, we will only pay for any pixels not covered by the wall.
The basis of using occlusion culling with light shaders is that the depth buffer used for the creation of the G-Buffer is available at no cost (this is only true if the resolution of the G-Buffer is the same as destination colour buffer and that we are using the same projection matrix for the geometry shaders and light shaders). If you are using light sized quads, it simple a matter of rendering the quad at a distance of the closest point on the light shader along the view direction (or the near clip plane if the closest point would be behind it) and enabling the depth test without depth writes. If the depth test fails then something was in front of the closest point of the light and therefore the light at that pixel couldn’t be seen by the viewer.

The problem comes when we try and combine the occlusion test with using geometry to represent the light shader. Even with convex geometries, there is a conflict between our solution of front face culling and needing the depth at the closest point. To use the depth of the closest points we must render front faces which will fail when clipping the near plane (which we can’t remove). Ultimately we need to produce a cap at the near plane to fix the hole produced by clipping, but this can be a difficult and expensive CPU operation.
My solution is much simpler; I simply turn off the occlusion culling if the light shader hits the near plane and just render the back faces without depth testing. Its means some pixels run the pixel shader unnecessarily but it’s very cheap on the CPU and the actual difference is usually only a few pixels.

Concave Light Volume
Concave light shaders are useful for making complex and hard edged lights. The problem is closely related to shadow volumes, so it’s probably worth implementing a robust shadow volume technique which have been researched extensively and are now very robust and modifying them for use on concave light volumes. The only major change is to add the lights volume is such as way that everything in the exterior is in shadow.
Shadows

There are two main techniques used for shadows. Shadow volumes are the same as a conventional renderer whereas shadow maps have a few changes.
Shadow Maps
Shadow maps are very easy to support under deferred lighting and have very good performance. The key is using the little used variant known as forward shadow mapping [16]. In standard shadow mapping the shadow map is projected onto the object and the depths compared. With forward shadow mapping the objects position is projected into shadow map space and then depths compared there.
The first step is to calculate the shadow map; this is exactly the same as a conventional renderer. All objects in the lights view are rendered to a depth texture (depending on hardware this might be an actual depth buffer or a high precision texture), for point lights 6 depth textures are rendered (the faces of the cube surrounding the light source).
When the light that generated the shadow map is rendered, the shadow map is attached to the light shader in the standard fashion (a cube map for the point light case). A shadow warp matrix is computed that takes points in view space to the shadow space. Then the light shader for each pixel transforms the surface position (in view space) via the warp matrix into a shadow space point. This shadow space point provides both the surface depth and coordinates to project on to the shadow map, which provides the shadow maps depth.
float PointSampleShadowMap(float4x4 ShadowWarpMatrix)
{

float4 PinShadow = mul(P, matShadowWarp);

float PDepth = PinShadow.z / PinShadow.w;

float SDepth = tex2Dproj(ShadowTexture, PinShadow);

if(PDepth < SDepth)

return 1; // not in shadow
else
return 0; // in shadow
}

For percentage closest filtering we jitter the samples before lookup and then average the result. It’s good for performance to remember that compares are per component, and that the dot product of a vector with itself when the values of each component of 0 or 1 is a sidewise accumulator [17]. The cost of a 4 sample percentage closest filter is little more than the cost of the extra texture lookups.
float PCF4SampleShadowMap(float4x4 ShadowWarpMatrix)
{

float4 PinShadow = mul(P, matShadowWarp);

float PDepth = PinShadow.z / PinShadow.w;

float4 SDepth;

SDepth.x = tex2Dproj(ShadowTexture, PinShadow + Jitter0);

SDepth.y = tex2Dproj(ShadowTexture, PinShadow + Jitter1);

SDepth.z = tex2Dproj(ShadowTexture, PinShadow + Jitter2);

SDepth.w = tex2Dproj(ShadowTexture, PinShadow + Jitter3);

float4 compare = (PDepth < SDepth.xyzw);

return (compare dot compare) *0.25;

}
More Control over Lighting
One big advantage with using deferred lighting is that all surfaces and objects are affected equally. But at times this is also a problem, in many cinematic lighting rigs extreme effort is used making sure lights and shadows don’t affect particular things (like lighting only the movie’s star faces, or making sure random shadows don’t hit things). This is easy using standard lighting systems but deferment makes it harder, the solution is a ID parameter stored in the G-Buffer.

 One use of this is to allow each object to decide which lights affect it. Every object or surface has its own ID and this ID is checked via the light shader. The light shader contains a texture that has a Boolean result whether this object ID (used as a UV coordinate) should be affected.
This also allows multiple light equations by having several illuminate functions for different lighting equations and using the ID to select which one is used, currently this is very expensive but when we have pixel shader dynamic branching this could become fast.
Another approach for different lighting equations is to use hybrid deferred lighting system, where some objects bypass (fully or partially) the deferred light system and light directly in the lit buffer, obviously this loses most of the benefits but it can be helpful it you have a few objects that don’t fit into your deferred lighting model.
High dynamic range imaging [18]
Deferred lighting would appear to be trivial to extend to the use high dynamic range images, with 16 bit per surface colour channels, a destination lit buffer that can be any precision we choose and the post-processing phase to perform tone-mapping, it would appear that HDRI should be the default for this type of rendering. Unfortunately current hardware can’t alpha blend into textures that have more than 8 bits of precisions; which mean there is no easy way to accumulate the lighting contributions.

A solution is to keep a second temp buffer (same size and resolution of the lit buffer) which is the output of all light shaders, the lights shader have as an input the ‘real’ lit buffer and do the light accumulation at the end of the shader, then the light shader geometry is re-processed but with a simple pixel shader that copies the temp lit buffer and replaces the exact same pixels in the ‘real’ lit buffer. This only adds a small cost per light shader to support HDRI (the extra vertex cost and the running of a trivial pixel shader) as the copy operation only copies pixels that have changed but the state changes may be prohibitively expensive.
Post-processing Shaders

This last phase is optional, at its most complex may be divided into 2 sub-phases. Here we want to take the fully lit scene and add any other ‘effects’, some examples would be fog, depth of field or tone mapping, also non-lit particles and transparent surfaces would be added here.

The inputs are all the buffers generated before (G-Buffers and the lit buffer) and actual output will be to the back-buffer for display. At its simplest, this phase doesn’t occur and the lit buffer is the back-buffer (super-sampling can occur as a part of the light shaders with some modifications to the light shaders), at its most complex it writes to temporary surfaces before finally processing into the back-buffer.

The potential sub-phases come about if super-sampling anti-aliasing is used. Currently fast anti-aliasing is done via multi-sampling, this has a high resolution depth/stencil but only a standard resolution colour buffer, the high resolution depth/stencil is used to calculate how much to filter the normal resolution colour buffer. This cannot be used with a G-Buffer, as you cannot safely filter the values stored there (to be absolutely correct, you can filter the G-Buffer but would require a completely programmable custom filter).
The main form of anti-aliasing for G-Buffers is to generate everything at a higher resolution and filter down as a post-process (an other type would be to have the light shaders use custom filters when they read the data out of G-Buffer). Unfortunately when this is done there is no way (currently) of filtering the depth/stencil buffer, so anything done post this must be done without the depth buffer. This mark’s the sub-phases, in the 1st sub-phase any post-processing has access to the depth buffer and will undergo super-sampling, whereas the 2nd sub-phase will output at the actual output resolution.

Fog

Fog can be the simple distance based fog or much more complex volumetric effects (though for true volumetric fog, it should be integrated into the light shaders). The simple distance based fog, looks up to position from the G-Buffer and attenuates the colour in the lit buffer based on it. Depending on the exact form of fogging and surfaces it may be possible to do the actual blending in the alpha blender.

float4 DistanceFog(float4 fogColour, float2 uv)

{
float projDist = Gbuffer.Pos[uv].z / Gbuffer.Pos[uv].w;

float t = tex1D(projDist);

 return lerp(LB, fogColour, t);
}
Depth of Field

My favourite depth of field effect currently available in real-time is the technique developed by Guennidi Riguer [19] which is easily adapted to our deferred shading system. The basic idea is to calculate the distance from the focal plane and use this to control the size of a ‘circle of confusion’, this circle is used to lookup the image, the bigger the circle the more blurred the final image.
The algorithm easily adapts to our deferred lighting system but runs into instruction limits under PS_2_0 (Riguers’ version calculated some values (the blur factor) in the geometry pass whereas we are using ‘generic’ parameters so we calculate it on the fly). You can either reduce the number of taps used in the ‘circle of confusion’, split it into multiple passes or move to longer shader versions.

float ComputeBlur(float depth, float focalDist, float focalRange)

{
return saturate(abs(depth – focalDist) * focalRange);

}

float4 RiguerDOF(
float focalDist,

float focalRange,

float maxCoC,

float2 tapOffset[NUM_OF_TAPS]

float2 uv)

{

float depth = Gbuffer.Pos[uv].z;

float blur = ComputeBlur(depth, focalDist, focalRange);

float4 colourSum = Lit[uv];

float sizeCoC = blur * maxCoC;

float totalContrib = 1.0f;

 for(i=0;i < NUM_OF_TAPS;i++)
 {

float tapUV = uv + tapOffset[i] * maxCoC;

float4 tapColour = Lit[tapUV];

float tapDepth = Gbuffer.Pos[tapUV].z;

float tapContrib = (tapDepth > depth) ? 1.0f :
ComputeBlur(tapDepth, focalDist, focalRange);

colourSum += tapContrib * tapColour;

totalContrib += tapContrib;

 }
return colourSum / totalContribution;

}

Practical Considerations

The first thing you notice when you have this system up and running that its very pixel-shader limited, expensive pixel Shaders run multiple times per pixel.. This is one of the reason the light shader geometries work so well, even if you render lots of triangles getting the shape right the gains from accurate occlusion culling and fewer wasted pixels usually out way the vertex shader cost of transforming the geometries.
Shadow maps fit into this architecture extremely well, most of the cost of shadow maps is actually generating the shadow map, the actual cost of using a shadow map is a few cycles per pixel, even percentage closest filtering is only slightly more expensive. As shadow maps don’t have to be updated every frame its easy to have lots of shadows, the cost to use a light with a shadow over a light without a shadow can be as low as 6 pixel shader instruction per screen pixel.
Deferred lighting totally changes the behaviour you’d expect from complex lighting algorithms, lots of small lights are faster than big lights that cover a lot of screen space. If your world is densely occluded lots of your lights won’t cost much at all, this causes a strange performance effect, lighting a flat plane is a lot more expensive than lighting a complex environment.

Problem Areas

Transparency

Transparency are a major weakness, there is no cheap solution to ‘standard’ transparencies. The best (in speed terms) we can do currently is to fall-back to a non-deferred lighting system for transparent surfaces and blend them in post-processing. The best (in image terms) using current hardware is depth-peeling. Each peeled layer runs the complete set of light shaders using the stencil buffer to limit pixel coverage and then blends the result together [20].
Memory

No solutions but a warning that deferred lighting has a number of large render-targets. If super-sampling is used the render-targets are even bigger. With 16 bit per component of the G-Buffer, the standard 16 components take up 256 bits per pixel with another 32 bits for the depth/stencil for a total of 288 bits per pixel. For a resolution of 1024x768 the G-Buffer alone takes over 28 MB of video memory (now factor in super-sampling!). Also there are the lit buffer and any spares used by the post-processing.

Conclusions
Deferred Lighting is now possible in hardware on the latest video cards, it has an own unique advantages and disadvantages and while in many cases the disadvantage out way the advantages on current hardware in the right situations it can outperform and look better than conventional per-pixel lighting. In situations with complex procedural shaders with many lights and shadows, the saving can be massive this is even truer in densely occluded environments. The same techniques used to accelerate objects (batching etc) can be used to accelerate lights, and if a light isn’t visible its cost is very low.
In the long term the occlusion and geometric properties of deferred lighting are its most interesting factors, no other technique allows you to render so many lights affecting a single surface without crippling performance, with deferred lighting it scales much better.
Biblography
1. T. Saito and T. Takahashi. "Comprehensible Rendering of 3-D Shapes". Computer Graphics (SIGGRAPH '90 Proceedings), Vol. 24, No. 4 1990
2. Perlin, Ken, An Image Synthesizer, Computer Graphics, Vol. 19 No. 3 1985

3. Jason Mitchell, Real-Time Image-Space Outlining for Non-Photorealistic Rendering - SIGGRAPH 2002
4. Marc Olano and Anselmo Lastra, A Shading Language on Graphics Hardware: The PixelFlow Shading System. In Proceedings of SIGGRAPH 98
5. James Blinn, Jim Blinn's Corner: A Trip Down the Graphics Pipeline, Morgan Kaufmann, 1996
6. Nicolas Thibieroz, Deferred Shading with Multiple Render Targets. ShaderX2 - Shader Tips & Tricks
7. PIXAR. The RenderMan Interface Specification: Version 3.1. Pixar Animation Studios, September 1999.

8. John Carmack, Plan files on Doom 3 renderer
9. B. T. Phong. Illumination for computer generated pictures. Communications of the ACM, 18(6):311--317, 1975

10. J. F. Blinn. Models of light reflection for computer synthesized pictures. Computer Graphics, 11(2):192--198, 1977
11. Microsoft. Direct3D Immediate Mode. From the DirectX 9 SDK

12. Segal, Mark and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 1.0), Silicon Graphics Incorporated, 1993

13. Atari ST 3D Graphics, Abacus Software Book 12
14. Mark Kilgard Shadow Papers (Various)

15. Möller and Haines,Real-Time Rendering A. K. Peters, 1999. ISBN 1-56881-101-2
16. Hansong Zhang, A Traditionalist View of 3-D Image Warping

17. ATI Shadow Map Demo

18. DEBEVEC, P. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In SIGGRAPH 98 (July 1998)

19. G Riguer, Pixel Shader V2 Depth Of Field Power Point Presentation For ATI 9700

20. NVIDIA Cass Everrit Order independent transparency
[image: image3.emf]

1

Wasted Space

Used Space

Top down view of frustum in View space Frustum

Top down view of frustum in Screen space Frustum

Effect of storing position in different spaces

Reference Lines

Norm.Y

Material

Norm.Z

ID

Pos.X

Note: From now on I will use the term ‘shader’ in the Renderman sense of the complete process of rendering an object [7]. Often a ‘shader’ will consist of both a vertex shader and a pixel shader (and sometimes may involve multiples of both).

Pos.Y

Pos.Z

Norm.X

Fa

Cs0.B

Cs0.G

Cs0.R

Fb

Cs1.B

Cs1.G

Cs1.R

G-Buffer Layout

Material Lookup texture

?

KEmm

KAmb

Kspecblend

